%(

| Tpsp

Lt

T PROGRAMME

ICT POLICY

europeana

think culture

DELIVERABLE

Project Acronym: Europeana v3.0
Grant Agreement 620484
number:

D5.1 - Operations Process Description Manual
Revision: 1 (May 2015)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

P Public
C Confidential, only for members of the consortium and the Commission Services
Authors:

Pavel Kats (Europeana Foundation)

Bram Lohman (Europeana Foundation)
Yorgos Mamakis (Europeana Foundation)
Jacob Lundqvist (Europeana Foundation)

0.1 May 2015 Pavel Kats EF Initial Version
Bram Lohman EF
Yorgos Mamakis | EF
Jacob Lundqvist

Statement of originality:
This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both.

Introduction
Production
PaaS Application Deployment
Setting up services
Connecting to services
Deploying applications
Portal/AP| Deployment
Step 1: Generating war files
Step 2: Access the buildhost
Step 3: Pick up WAR files
Step 4: Deploy WAR files and resources
Step 4: Checking what environ is currently active
Step 5: Activating blue
Step 6: Verifying the new instances
Step 7: Activate environments
Ingestion
Restarting UIM
Restarting REPOX
Restarting MINT

Summary

Introduction

As described in the deliverable D5.2 Review of Technical and Logical Architecture,
Europeana operates a complex infrastructure for ingesting and publishing digital heritage
metadata and content. Managing this infrastructure involves various procedures, needed
for deploying new versions of software, publishing new content and running miscellaneous
supporting tasks.

As part of Europeana’s migration to a Digital Service Infrastructure (DSI), these
procedures are standardized, streamlined and documented by the Europeana team. This
is an ongoing process because computational resources used by Europeana change quite
often; so do software components using these resources.

In the future, we are planning to automate some of the procedures to leave less space to
human error and make our operations more efficient.

At this point in time, by the end of Europeana v3, the goal of this deliverable is to share
some of the core maintenance procedures.

This deliverable is read best in conjunction with the previous one, D5.2.

Production

PaaS Application Deployment

In the new hosting environment (Cloud Foundry PaaS), Europeana’s components are

divided into three groups and hosted, accordingly, in three d

ifferent context:

Applications - custom components interacting with end-users

Services - standard components, used by applications and managed by the

platform (databases, log services)

e VNMs - custom components which are still not compatible with the PaaS technology

and run in isolation on traditional virtual machines.

The figure below depicts this architecture.

Droplets Services
mﬁj ‘J- P

posigresgl

Mongo

bject-db
(nat replicated)

LogStash

syslog-drain

Mongo

europeana-ingestion-db

VMs

(not replicated)

- I - ubuntui@bal.eanadev.org

You

Figure 1: Component Architecture

Setting up services

Applications deployed to a PaaS access external resources
dependencies such as databases, messaging systems, files

via Services. All external
systems and so on are

Services. The following commands allow managing the Services:

o cf services to check existing services

e cf marketplace to check what services can be created

http://cloudfoundry.org/

® cf create-service to create the required service (e.g. cf

create-service postgresgl Pluto-free postgres test)
Connecting to services

For initialisation, editing outside the application, and other custom neede. direct access to
some of the services is sometimes needed. The services are only accessible via the PaaS
network; to get there, use the provided jumphost..

® ssh <jumphost>
® less service-access-readme
e Port-forward (using an SSH tunnel) the following databases
® TIngestion Mongo
e Portal Mongo
® PostgreSQL
® Neodj

e Solr can be accessed by SSHing via the jumphost
Deploying applications
Step 1: Edit the YAML file

Applications are described in configuration files manifest.yml. It has the following fields:

e applications
o name: needs to be unique within the space
host: needs to be unique across all organisations (and a valid DNS address)
domain: de.a%sapp.eu
path: location of the war file, e.g. path: api2-war/target/api.war
services: connections to existing services, e.g. - postgres_test

O O O O

Step 2: Add the application credentials to any required services

As we are using a customised setup, the Cloud Foundry Orchestrator doesn't
automatically add the randomly created application user/password to the requested
services. To do this automatically, set up a port-forward to the required database, log in as
admin user (see service-access-readme), and create the user with read/write roles, e.g. for
MongoDB:
® db.createUser ({user:"<USER ID>",pwd:"<USER PASSWORD>",
roles: ["readWrite"]}) B B

The username/password can be found in the logs once the application has started, e.g.

® cf files api-test logs/env.log | grep username

Step 3: Push the application

https://www.assembla.com/wiki/show/europeana/PostgreSQL

Issue the following command:
® cf push

Portal/API Deployment

This section provides instruction on how to deploy a new instance of the Portal and the
API application. Europeana employs the blue-green deployment approach for deploying
and running its applications. Since any change takes an environment offline, should first
push changes to the inactive instance, then swap the active environment.

Step 1: Generating war files

The war files are normally generated on the buildhost using the build user. If you need to
ensure you are building the same binaries as in production, find the revision number in
http://www.europeana.eu/portal/build. txt Or
http://www.europeana.eu/api/build. txt and then check out the same revision, e.g.
"Revision d6d53f08c8 built at..." would mean you should do:

® git checkout 4fbd854141 before building it

® portal build command mvn clean install -DskipTests -P production

API does not need a separate build, the one generated normally for a9builder is enough to
use.

Step 2: Access the buildhost

Login to the buildhost with a user suited for building the production environment.

Step 3: Pick up WAR files

Run the following commands:
e cp -av ~a%builder/proj/alpha/api2-alpha/api2-war/target/api.war

~/warfiles
e cp -av ~a%builder/proj/alpha/portal-alpha/portal2/target/portal.war

~/warfiles

Step 4: Deploy WAR files and resources

The following resources need to be deployed
e ~/warfiles Before deploying you need to move war files to be deployed to this

location

e ~/webroot Static content that should be served by apache

http://martinfowler.com/bliki/BlueGreenDeployment.html
https://www.assembla.com/wiki/show/europeana/DskipTests

e ~/instances Yaml files for tomcat projects, apache yaml config files need to be in
a special file hierarchy

e ~/backups All deployed content is saved here

Step 4: Checking what environ is currently active

Issue the following command:
e cf routes

If blue is active, do your changes to green, or vice versa.

Step 5: Activating blue (for green swap all green/blue refs)

Use the following commands to depoy the applications you need:
e web-deploy blue

e api-deploy blue

e portal-deploy blue

Wait several mins after deploy is done to ensure that all initial startup processing is done
by checking that cpu usage is close to 0%:

e cf app blue-portal
e cf app blue-api

e cf app blue-web
Step 6: verifying the new instances
Run queries on the environment you deployed to make sure that it works properly.

Step 7: Activate environments

® activate-environ blue

® activate-environ green

Ingestion

UIM is Europeana ingestion workflow engine. The section below provides instruction on
(re)starting its main components.

Restarting UIM

Depending on the type of issue a number of procedures must be followed.

If UIM crashed because of java.lang.OutOfMemoryError (affecting MongoDB as well):

e ssh <uim-host>
® ps uxa|grep mongo -> No Mongo instance reported

e /etc/init.d/mongodb start

e tail -f /var/log/mongodb/mongodb.log (Wait till the accepting connections
message is shown in the logs)
e Ctrl+C

su - <uim-user>

ps uxa|grep karaf (check if UIM is still up in crashed state)
1.8 kill -9 pid
1.9 cd apps/apache-karaf-2.11

bin/start

In case only the UIM crashed follow the last five steps of this procedure.

In case the neo4j server has an issue (the ingestion portal does not show hierarchies)
® ssh <neo4j-host>
® ps uxa|grep neo4j -> Check if there is a running instance of Neo4j
® cd /data/neod4dj-community-2.1.2/
® 1.14 bin/neod4j restart

In case the enrichment server has an issue (running enrichment on a dataset produces
logs related to EnrichmentDriver or connection refused)

ssh <enrichment-server>

ps uxa|grep mongo (Check if Mongo is affected if not go to the last command)
/etc/init.d/mongodb start

/etc/init.d/tomcat stop

/etc/init.d/tomcat start

(if the last one fails go t0 /usr/local/tomcat and issue bin/catalina.sh start)

In case the remote MongoDB fails:

ssh <mongodb-server>

pPs uxa|grep mongo

kill -9 pid
/etc/init.d/mongodb start

Wait several minutes

Restart the UIM (above)

In case Apache Solr fails:

® ssh <solr-server>

pPs uxa|grep catalina
kill -9 pid
/etc/init.d/solr start
Restart the UIM (above)

In case preview ingestion portal crashes:
® ssh <ingestion portal server>
® /etc/init.d/tomcat stop
® ps uxa|grep catalina
® /etc/init.d/tomcat start

Restarting REPOX
Log into the server running REPOX.

su uim
cd $home
pPs aux | grep catalina

kill -9 <process name>

sh apache-tomcat-6.0.36/bin/startup.sh

Restarting MINT

Log into the server running MINT.

® su uim

® cd $home

® ps aux | grep catalina

® kill -9 <process name>

® sh apache-tomcat-6.0.36/bin/startup.sh
Summary

The deliverable above describes several core operational procedures Europeana employs.

